Memoria de trabajo. Consideraciones clínicas y aproximaciones experimentales

Autores/as

  • Pascual Ángel Gargiulo Fundación Corporación Tecnológica Latinoamericana (FUCOTEL). Academia de Ciencias de Los Andes (ACLA). Laboratorio de Neurociencias y Psicología Experimental; Universidad Católica Argentina (UCA). Facultad de Humanidades y Ciencias Económicas. Cátedra de Psicopatología; Universidad Nacional de Cuyo (UNCuyo). Facultad de Ciencias Médicas. Departamento de Patología. Área de Farmacología; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) https://orcid.org/0000-0003-2962-4346
  • Adriana Inés Landa de Gargiulo Fundación Corporación Tecnológica Latinoamericana (FUCOTEL). Academia de Ciencias de Los Andes (ACLA). Laboratorio de Neurociencias y Psicología Experimental https://orcid.org/0000-0002-7008-2932

DOI:

https://doi.org/10.46553/RPSI.21.41.2025.p100-112

Palabras clave:

Memoria de trabajo, funciones ejecutivas, estriado ventral, Nucleus Accumbens Septi, glutamato, esquizofrenia, investigación translacional

Resumen

El estudio de la memoria de trabajo se enmarca en el de las funciones ejecutivas. Estas capacidades apuntan a la realización de propósitos finalistas. Analizamos aquí la memoria en calidad de instancia psíquica y repasamos el camino seguido para delimitar el concepto y constructo de la memoria de trabajo en este marco. Analizamos sucintamente las alteraciones de estas funciones en las psicosis esquizofrénicas, y en las adicciones a drogas de abuso más frecuentes. Recordamos brevemente modelos translacionales de estudio de las alteraciones de la memoria de trabajo. Finalmente referimos el modelo translacional de memoria de trabajo propuesto por nosotros, su proyección sobre las psicosis esquizofrénicas y el substrato cerebral propuesto. Recientemente, el estudio de los cuadros de psicosis se ha visto desarrollado a través de estudios translacionales en animales de experimentación. La vinculación entre las drogas de adicción o de uso indebido con las psicosis ha favorecido el desarrollo de modelos translacionales. En esta revisión se vincula una función afectada en las psicosis esquizofrénicas con un sistema de neurotransmisión y un núcleo cerebral en un modelo traslacional. De este modo experimental se asigna aquí una fisiopatogenia a este trastorno presente en las psicosis esquizofrénicas, vinculándolo al estriado ventral o Nucleus Accumbens Septi y a la transmisión glutamatérgica de éste.

Descargas

Citas

Arias Horcajadas, F., Dávila Píriz, J. R., Parra González, A., Sánchez Romero, S., Sánchez-Morla, E., Ampuero Sánchez, I., & Ramos Atance, J. A. (2023). Cannabinoid receptor type 2 gene is associated with comorbidity of schizophrenia and cannabis dependence and fatty acid amide hydrolase gene is associated with cannabis dependence in the Spanish population. Adicciones, 35(1), 33-46. https://doi.org/10.20882/adicciones.1587

Atkinson, R. C. & Shiffrin, R. M. (1968). Human Memory: A Proposed System and its Control Processes. En K. W. Spence & J. T. Spence (Eds.), Psychology of Learning and Motivation. Advances in Research and Theory (Vol. 2, pp. 89-195). Academic Press. https://doi.org/10.1016/S0079-7421(08)60422-3

Atkinson, R. C. & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225(2), 82–90. https://doi.org/10.1038/scientificamerican0871-82

Baiardi, G., Ruiz, A. M., Beling, A., Borgonovo, J., Martínez, G., Landa, A. I., Sosa, M. A., & Gargiulo, P. A. (2007). Glutamatergic ionotropic blockade within accumbens disrupts working memory and might alter the endocytic machinery in rat accumbens and prefrontal cortex. J Neural Transm (Vienna), 114(12), 1519-1528. https://doi.org/10.1007/s00702-007-0776-7

Baddeley, A. D. (1992). Working memory. Science, 255(5044), 556-559. https://doi.org/10.1126/science.1736359

Baddeley, A. D. (2021). Developing the Concept of Working Memory: The Role of Neuropsychology. Arch Clin Neuropsychol, 36(6), 861-873. https://doi.org/10.1093/arclin/acab060

Baddeley, A. & Hitch, G. (1974). Working memory. En G. A. Brower, The psychology of learning and motivation (vol. 8, pp. 47-89). Academic Press. https://doi.org/10.1016/S0079-7421(08)60452-1

Ballesteros, S. (2014). La atención selectiva modula el procesamiento de la información y la memoria implícita. Acción Psicológica, 11(1), 7-20. https://doi.org/10.5944/ap.11.1.13788

Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. The Journal of General Psychology, 39(1), 15-22. https://doi.org/10.1080/00221309.1948.9918159

Blair, C. (2017). Educating executive function. Wiley Interdisciplinary Reviews Cognitive Science, 8(1-2), e1403. https://doi.org/10.1002/wcs.1403

Craik, F. I. M. & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671-684. https://doi.org/10.1016/S0022-5371(72)80001-X

Cristofori, I., Cohen-Zimerman, S., & Grafman, J. (2019). Executive functions. Handbook of Clinical Neurology (vol. 163, pp. 197-219). https://doi.org/10.1016/B978-0-12-804281-6.00011-2

D'Souza, D. C., DiForti, M., Ganesh, S., George, T. P., Hall, W., Hjorthøj, C., Howes, O., Keshavan, M., Murray, R. M., Nguyen, T. B., Pearlson, G. D., Ranganathan, M., Selloni, A., Solowij, N., & Spinazzola, E. (2022). Consensus paper of the WFSBP task force on cannabis, cannabinoids and psychosis. The World Journal of Biological Psychiatry, 23(10), 719-742. https://doi.org/10.1080/15622975.2022.2038797

Dudchenko, P. A. (2004). An overview of the tasks used to test working memory in rodents. Neuroscience & Biobehavioral Reviews, 28(7), 699-709. https://doi.org/10.1016/j.neubiorev.2004.09.002

Emond, V., Joyal, C., & Poissant, H. (2009). Neuroanatomie structurelle et fonctionnelle du trouble déficitaire d'attention avec ou sans hyperactivité (TDAH) [Structural and functional neuroanatomy of attention-deficit hyperactivity disorder (ADHD)]. L’Encéphale, 35(2), 107-114. https://doi.org/10.1016/j.encep.2008.01.005

Ferretti, V., Sargolini, F., Oliverio, A., Mele, A., Roullet, P. (2007). Effects of intra-accumbens NMDA and AMPA receptor antagonists on short-term spatial learning in the Morris water maze task. Behavioral Brain Research, 179(1), 43-49. https://doi.org/10.1016/j.bbr.2007.01.009

Fiske, A. & Holmboe, K. (2019). Neural substrates of early executive function development. Developmental Review, 52, 42-62. https://doi.org/10.1016/j.dr.2019.100866

Friedman, D., Nessler, D., Johnson, R., Jr., Ritter, W., & Bersick, M. (2007). Age-related changes in executive function: an event-related potential (ERP) investigation of task-switching. Aging Neuropsychology and Cognition, 15(1), 95-128. https://doi.org/10.1080/13825580701533769

Friedman, N. P. & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186-204. https://doi.org/10.1016/j.cortex.2016.04.023

Gargiulo, P. Á. & Landa De Gargiulo, A. I. (2014). Glutamate and modeling of schizophrenia symptoms: review of our findings: 1990-2014. Pharmacological Reports, 66(3), 343-52. https://doi.org/10.1016/j.pharep.2014.03.010

Grace, A. A. (2000). Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Research Review, 31(2-3), 330-341. https://doi.org/10.1016/s0165-0173(99)00049-1

Hartman, M., Steketee, M. C., Silva, S., Lanning, K., & Andersson, C. (2003). Wisconsin Card Sorting Test performance in schizophrenia: the role of working memory. Schizophrenia Research, 63(3), 201-217. https://doi.org/10.1016/s0920-9964(02)00353-5

Huang, L.-C., Lin, S.-H., Tseng, H.-H., Chen. K. C., Abdullah, M., & Yang, Y. K. (2023). Altered glutamate level and its association with working memory among patients with treatment-resistant schizophrenia (TRS): a proton magnetic resonance spectroscopy study. Psychological Medicine, 53(7), 3220–3227. https://doi.org/10.1017/S003329172100533X

Kebir, O. & Tabbane, K. (2008). La mémoire de travail dans la schizophrénie: revue de la littérature [Working memory in schizophrenia: a review]. L’Encéphale, 34(3), 289-298. https://doi.org/10.1016/j.encep.2006.12.008

Kent, P. L. (2016). Working Memory: A Selective Review. Applied Neuropsycholy: Child, 5(3), 163-72. https://doi.org/10.1080/21622965.2016.1167491

Kirschmann, E. K., Pollock, M. W., Nagarajan, V., Torregrossa, M. M. (2017). Effects of Adolescent Cannabinoid Self-Administration in Rats on Addiction-Related Behaviors and Working Memory. Neuropsychopharmacology, 42(5), 989-1000. https://doi.org/10.1038/npp.2016.178

Kirschmann, E. K., Pollock, M. W., Nagarajan, V., Torregrossa, M. M. (2019). Development of working memory in the male adolescent rat. Developmental Cognitive Neurosciense, 37, 100601. https://doi.org/10.1016/j.dcn.2018.11.003

Klatzky, R. L. (1980). Human Memory: Structures and Processes (2da edición). Freeman.

Lopera Restrepo, F. (2008). Funciones Ejecutivas: Aspectos Clínicos. Revista Neuropsicología, Neuropsiquiatría y Neurociencias (Revista NNN), 8(1), 59-76. http://revistaneurociencias.com/index.php/RNNN/article/view/222

López, M. (2011). Working memory and learning: Contributions of Neuropsychology. Cuadernos de Neuropsicología, 5(1), 25-47. http://www.cnps.cl/index.php/cnps/article/view/115

Luria, A. R. (1968). The mind of a Mnemonist. Basic Books.

Malmberg, K. J., Raaijmakers, J. G. W., & Shiffrin, R. M. (2019). 50 years of research sparked by Atkinson and Shiffrin (1968). Memory & Cognition, 47(4), 561-574. https://doi.org/10.3758/s13421-019-00896-7

McCarthy, R. A. & Warrington, E. K. (1990). Cognitive Neuropsychology: A clinical introduction (pp. 275-295). Academic Press.

Mestrović, A. H., Palmović, M., Bojić, M., Treselj, B., & Nevajda, B. (2012). Electrophysiological correlates activated during the Wisconsin Card Sorting Test (WCST). Collegium Antropologicum, 36(2),513-520.

Miller, E. K. & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202. https://doi.org/10.1146/annurev.neuro.24.1.167

Miyake, A. & Friedman, N. P. (2012). The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Current Directions in Psychological Science, 21(1), 8-14. https://doi.org/10.1177/0963721411429458

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734

Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D.C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241-268. https://doi.org/10.3758/s13415-011-0083-5

Ochoa Angrino, S. & Cruz Panesso, I. (2007). Wisconsin Card Sorting Test en el estudio del déficit de atención con hiperactividad, trastornos psiquiátricos, autismo y vejez. Universitas Psychologica, 6(3), 637-648. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-92672007000300015&lng=en&tlng=es.

Papalia, D. E. & Wendkos-Olds, S. (1987). Psicología (pp. 205-243). McGraw-Hill.

Park, S. & Gooding, D. C. (2014). Working memory impairment as an endophenotypic marker of a schizophrenia diathesis. Schizophrenia Research: Cognition, 1(3), 127-136. https://doi.org/10.1016/j.scog.2014.09.005

Peterson, L. & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58(3), 193-198. https://doi.org/10.1037/h0049234

Repovš, G. & Baddeley, A. (2006). The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience, 139(1), 5-21. https://doi.org/10.1016/j.neuroscience.2005.12.061

Schacter, G. B., Yang, C. R., Innis, N. K., & Mogenson, G. J. (1989). The role of the hippocampal-nucleus accumbens pathway in radial-arm maze performance. Brain Research, 494(2), 339-49. https://doi.org/10.1016/0006-8993(89)90602-1

Scheel-Kruger, J. & Willner, P. (1991). The mesolimbic system: Principles of operation. En P. Willner & J. Scheel-Kruger (Eds.), The mesolimbic dopamine system: from motivation to action (pp.559-597). Wiley.

Schroeder, U., Schroeder, H., Schwegler, H., & Sabel, B. A. (2000). Neuroleptics ameliorate phencyclidine-induced impairments of short-term memory. British Journal of Pharmacology, 130(1):33-40. https://doi.org/10.1038/sj.bjp.0703171

Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74(11), 1-29. https://doi.org/10.1037/h0093759

Vallejo-Reyes, F. (2019). Evaluación de la Función Ejecutiva en Usuarios con Dependencia de Pasta Base de Cocaína Mediante una Batería Neuropsicológica. Psykhe, 28(1), 1-17. https://doi.org/10.7764/psykhe.28.1.1111

Verdejo-García, A. & Bechara, A. (2010). Neuropsicología de las funciones ejecutivas. Psicothema, 22(2), 227-235. https://www.psicothema.com/pdf/3720.pdf

Wilson, J., Freeman, T. P., & Mackie, C. J. (2019). Effects of increasing cannabis potency on adolescent health. The Lancet Child & Adolescent Health, 3(2), 121-128. https://doi.org/10.1016/S2352-4642(18)30342-0

Publicado

30-04-2025

Cómo citar

Gargiulo, P. Ángel, & Landa de Gargiulo, A. I. (2025). Memoria de trabajo. Consideraciones clínicas y aproximaciones experimentales. Revista De Psicología, 21(41), 100–112. https://doi.org/10.46553/RPSI.21.41.2025.p100-112

Número

Sección

Artículos